Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
FASEB J ; 38(5): e23533, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38451430

RESUMEN

Rubeosis Iridis (RI) is characterized by an increase in neovascularization and inflammation factors in the iris. During angiogenesis, the urokinase plasminogen activator (uPA) and its receptor (uPAR) play a pivotal role in extracellular matrix remodeling, where uPAR regulates endothelial cell migration and proliferation through assembly with transmembrane receptors. Here, in the context of hypoxia-induced angiogenesis, the uPA/uPAR system blockage was investigated by using UPARANT in a novel ex vivo human iris organotypic angiogenesis assay. The effects of uPA/uPAR system antagonism in the humanized model of ocular pathologic angiogenesis were analyzed by sprouting angiogenesis and protein assays (western, dot blots, and co-immunoprecipitation) and correlated to vascular endothelial growth factor (VEGF) inhibition. Phosphoprotein and co-immunoprecipitation assay illustrated an unidentified antagonism of UPARANT in the interaction of uPAR with the low-density lipoprotein receptor-related protein-1 (LRP-1), resulting in inhibition of ß-catenin-mediated angiogenesis in this model. The effects of uPA/uPAR system inhibition were focal to endothelial cells ex vivo. Comparison between human iris endothelial cells and human retinal endothelial revealed an endothelial-specific mechanism of ß-catenin-mediated angiogenesis inhibited by uPA/uPAR system blockage and not by VEGF inhibition. Collectively, these findings broaden the understanding of the effects of the uPA/uPAR system antagonism in the context of angiogenesis, revealing non-canonical ß-catenin downstream effects mediated by LRP-1/uPAR interaction.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , beta Catenina , Angiogénesis , Iris
2.
Mol Nutr Food Res ; 68(3): e2200623, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044285

RESUMEN

SCOPE: Our laboratory has previously described the antioxidant and anti-inflammatory potential of a wild olive (acebuche, ACE) oil against hypertension-associated vascular retinopathies. The current study aims to analyze the antifibrotic effect of ACE oil on the retina of hypertensive mice. METHODS AND RESULTS: Mice are rendered hypertensive by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) and simultaneously subjected to dietary supplementation with ACE oil or a reference extra virgin olive oil (EVOO). Intraocular pressure (IOP) is measured by rebound tonometry, and retinal vasculature/layers are analyzed by fundus fluorescein angiography and optical coherence tomography. Different fibrosis-related parameters are analyzed in the retina and choroid of normotensive and hypertensive mice with or without oil supplementation. Besides preventing the alterations found in hypertensive animals, including increased IOP, reduced fluorescein signal, and altered retinal layer thickness, the ACE oil-enriched diet improves collagen metabolism by regulating the expression of major fibrotic process modulators (matrix metalloproteinases, tissue inhibitors of metalloproteinases, connective tissue growth factor, and transforming growth factor beta family). CONCLUSION: Regular consumption of EVOO and ACE oil (with better outcomes in the latter) might help reduce abnormally high IOP values in the context of hypertension-related retinal damage, with significant reduction in the surrounding fibrotic process.


Asunto(s)
Hipertensión , Hipertensión Ocular , Ratones , Animales , Hipertensión/prevención & control , Antioxidantes/metabolismo , Aceite de Oliva/farmacología , Hipertensión Ocular/prevención & control , Fibrosis , Retina/metabolismo
3.
J. physiol. biochem ; 78(4): 915-932, nov. 2022. graf, ilus
Artículo en Inglés | IBECS | ID: ibc-216181

RESUMEN

Arterial hypertension (AH) leads to oxidative and inflammatory imbalance that contribute to fibrosis development in many target organs. Here, we aimed to highlight the harmful effects of severe AH in the cornea. Our experimental model was established by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) to C57BL/6 mice, which were monitored weekly for arterial blood pressure and intraocular pressure (IOP). Morphological studies of ocular tissues were accompanied by analyses of reactive oxygen species generation, and localization/expression of NAPDH oxidase isoforms (NOX1, NOX2, NOX4) and inflammatory biomarkers (PPARα, PPARγ, IL-1β, IL-6, IL-10, TNF-α, and COX-2). Masson’s trichrome and Sirius Red staining were used to explore the fibrotic status of the cornea. The expression of collagen isoforms (COL1α1, COL1α2, COL3α1, COL4α1, COL4α2) and relevant metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) were also quantified to evaluate the participation of collagen metabolism in AH-related corneal damage. Hypertensive animals showed an increase in IOP values, and a thinner cornea compared with normotensive controls. Moreover, AH increased NADPH oxidase activity and reactive oxygen species generation in the cornea, which was accompanied by transcriptional upregulation of NOX isoforms and inflammatory biomarkers, while reducing PPAR expression. L-NAME-treated animals also developed corneal fibrosis with overexpression of collagen isoforms and reduction of factors responsible for collagen degradation. This is the first study reporting structural changes in the cornea and elevated IOP in L-NAME-treated mice. Overexpression of the NADPH oxidase system and collagen deposition might play a substantial role in the pathogenic mechanisms contributing to ocular disturbances in a context of severe hypertension. (AU)


Asunto(s)
Animales , Ratones , Hipertensión , Óxido Nítrico/metabolismo , Córnea , Colágeno/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasas , Estrés Oxidativo , NG-Nitroarginina Metil Éster
4.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009326

RESUMEN

Preeclampsia (PE) is a pregnancy-specific disorder characterized by the new onset of hypertension plus proteinuria and/or end-organ dysfunction. Here, we investigate the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system as a major component of reactive oxygen species generation, in a rodent model of early-onset preeclampsia induced by excess sFlt1 (soluble fms-like tyrosine kinase 1). Placenta and kidney samples were obtained from normal pregnant and PE rats to measure the sFlt1/PlGF (placental growth factor) ratio in addition to oxidative stress-related parameters, including the activities and expressions of NADPH oxidase isoforms (NOX1, NOX2, and NOX4), components of nitric oxide (NO) metabolism, and antioxidant enzymes. Peroxisome proliferator-activated receptors (PPARα, PPARγ) and cytokines IL1ß, IL3, IL6, IL10, and IL18 were also measured to evaluate the inflammation status in our experimental setting. Excessive O2●- production was found in rats that were treated with sFlt1; interestingly, this alteration appears to be mediated mainly by NOX2 in the placenta and by NOX4 in the kidney. Altered NO metabolism and antioxidant defense systems, together with mitochondrial dysfunction, were observed in this model of PE. Preeclamptic animals also exhibited overexpression of proinflammatory biomarkers as well as increased collagen deposition. Our results highlight the role of NADPH oxidase in mediating oxidative stress and possibly inflammatory processes in the placenta and kidney of an sFlt1-based model of early-onset preeclampsia.

5.
J Physiol Biochem ; 78(4): 915-932, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35943663

RESUMEN

Arterial hypertension (AH) leads to oxidative and inflammatory imbalance that contribute to fibrosis development in many target organs. Here, we aimed to highlight the harmful effects of severe AH in the cornea. Our experimental model was established by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) to C57BL/6 mice, which were monitored weekly for arterial blood pressure and intraocular pressure (IOP). Morphological studies of ocular tissues were accompanied by analyses of reactive oxygen species generation, and localization/expression of NAPDH oxidase isoforms (NOX1, NOX2, NOX4) and inflammatory biomarkers (PPARα, PPARγ, IL-1ß, IL-6, IL-10, TNF-α, and COX-2). Masson's trichrome and Sirius Red staining were used to explore the fibrotic status of the cornea. The expression of collagen isoforms (COL1α1, COL1α2, COL3α1, COL4α1, COL4α2) and relevant metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) were also quantified to evaluate the participation of collagen metabolism in AH-related corneal damage. Hypertensive animals showed an increase in IOP values, and a thinner cornea compared with normotensive controls. Moreover, AH increased NADPH oxidase activity and reactive oxygen species generation in the cornea, which was accompanied by transcriptional upregulation of NOX isoforms and inflammatory biomarkers, while reducing PPAR expression. L-NAME-treated animals also developed corneal fibrosis with overexpression of collagen isoforms and reduction of factors responsible for collagen degradation. This is the first study reporting structural changes in the cornea and elevated IOP in L-NAME-treated mice. Overexpression of the NADPH oxidase system and collagen deposition might play a substantial role in the pathogenic mechanisms contributing to ocular disturbances in a context of severe hypertension.


Asunto(s)
Hipertensión , Óxido Nítrico , Ratones , Animales , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fibrosis , Estrés Oxidativo , Colágeno/metabolismo , Biomarcadores/metabolismo , Córnea/metabolismo , Córnea/patología
6.
Br J Nutr ; : 1-14, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35000635

RESUMEN

Despite numerous reports on the beneficial effects of olive oil in the cardiovascular context, very little is known about the olive tree's wild counterpart (Olea europaea, L. var. sylvestris), commonly known as acebuche (ACE) in Spain. The aim of this study was to analyse the possible beneficial effects of an extra virgin ACE oil on vascular function in a rodent model of arterial hypertension (AH) induced by NG-nitro-l-arginine methyl ester (L-NAME). Four experimental groups of male Wistar rats were studied: (1) normotensive rats (Control group); (2) normotensive rats fed a commercial diet supplemented with 15 % (w/w) ACE oil (Acebuche group); (3) rats made hypertensive following administration of L-NAME (L-NAME group); and (4) rats treated with L-NAME and simultaneously supplemented with 15 % ACE oil (LN + ACE group). All treatments were maintained for 12 weeks. Besides a significant blood pressure (BP)-lowering effect, the ACE oil-enriched diet counteracted the alterations found in aortas from hypertensive rats in terms of morphology and responsiveness to vasoactive mediators. In addition, a decrease in hypertension-related fibrotic and oxidative stress processes was observed in L-NAME-treated rats subjected to ACE oil supplement. Therefore, using a model of AH via nitric oxide depletion, here we demonstrate the beneficial effects of a wild olive oil based upon its vasodilator, antihypertensive, antioxidant, antihypertrophic and antifibrotic properties. We postulate that regular inclusion of ACE oil in the diet can alleviate the vascular remodelling and endothelial dysfunction processes typically found in AH, thus resulting in a significant reduction of BP.

7.
Foods ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34574102

RESUMEN

Inflammation plays a crucial role in the course of eye diseases, including many vascular retinopathies. Although olive oil is known to have beneficial effects against inflammatory processes, there is no information available on the anti-inflammatory potential of the wild olive tree (namely, acebuche (ACE) for the primitive Spanish lineages). Here we investigate the anti-inflammatory effects of ACE oil in the retina of a mouse model of arterial hypertension, which was experimentally induced by administration of L-NAME (NG-nitro-L-arginine-methyl-ester). The animals were fed supplements of ACE oil or extra virgin olive oil (EVOO, for comparative purposes). Retinal function was assessed by electroretinography (ERG), and different inflammation-related parameters were measured in the retina and choroid. Besides significant prevention of retinal dysfunction shown in ERG recordings, ACE oil-enriched diet upregulated the expression of the anti-inflammatory markers PPARγ, PPARα and IL-10, while reducing that of major proinflammatory biomarkers, IL-1ß, IL-6, TNF-α and COX-2. This is the first report to highlight the anti-inflammatory properties of an ACE oil-enriched diet against hypertension-related retinal damage. Noteworthy, dietary supplementation with ACE oil yielded better results compared to a reference EVOO.

8.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166231, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343638

RESUMEN

Other than being a physiological process, pregnancy is a condition characterized by major adaptations of maternal endocrine and metabolic homeostasis that are necessary to accommodate the fetoplacental unit. Unfortunately, all these systemic, cellular, and molecular changes in maternal physiology also make the mother and the fetus more prone to adverse outcomes, including numerous alterations arising from viral infections. Common infections during pregnancy that have long been recognized as congenitally and perinatally transmissible to newborns include toxoplasmosis, rubella, cytomegalovirus, and herpes simplex viruses (originally coined as ToRCH infections). In addition, enterovirus, parvovirus B19, hepatitis virus, varicella-zoster virus, human immunodeficiency virus, Zika and Dengue virus, and, more recently, coronavirus infections including Middle Eastern respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) infections (especially the novel SARS-CoV-2 responsible for the ongoing COVID-19 pandemic), constitute relevant targets for current research on maternal-fetal interactions in viral infections during pregnancy. Appropriate maternal education from preconception to the early postnatal period is crucial to promote healthy pregnancies in general and to prevent and/or reduce the impact of viral infections in particular. Specifically, an adequate lifestyle based on proper nutrition plans and feeding interventions, whenever possible, might be crucial to reduce the risk of virus-related gestational diseases and accompanying complications in later life. Here we aim to provide an overview of the emerging literature addressing the impact of nutrition in the context of potentially harmful viral infections during pregnancy.


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos , Complicaciones Infecciosas del Embarazo/fisiopatología , Virosis/fisiopatología , Femenino , Humanos , Necesidades Nutricionales , Embarazo , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/virología , Virosis/epidemiología
9.
Mol Vis ; 27: 161-178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907371

RESUMEN

Purpose: Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in severe hypertension-related eye damage. Methods: Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile biomarker of oxidative stress. Results: Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional upregulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the normotensive controls. Conclusions: The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.


Asunto(s)
Inhibidores Enzimáticos/toxicidad , NADPH Oxidasas/metabolismo , NG-Nitroarginina Metil Éster/toxicidad , Hipertensión Ocular/enzimología , Estrés Oxidativo/fisiología , Animales , Biomarcadores/metabolismo , Presión Sanguínea/efectos de los fármacos , Western Blotting , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , NADPH Oxidasas/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hipertensión Ocular/inducido químicamente , ARN Mensajero/genética , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/efectos de los fármacos , Retina/patología , Superóxidos/metabolismo
10.
Curr Vasc Pharmacol ; 19(2): 132-140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32234002

RESUMEN

Healthy lifestyle habits spanning from preconception to postpartum are considered as a major safeguard for achieving successful pregnancies and for the prevention of gestational diseases. Among preconception priorities established by the World Health Organization (WHO) are healthy diet and nutrition, weight management, physical activity, planned pregnancy and physical, mental and psychosocial health. Most studies covering the topic of healthy pregnancies focus on maternal diet because obesity increases the risks for adverse perinatal outcomes, including gestational diabetes mellitus, large for gestational age newborns, or preeclampsia. Thus, foods rich in vegetables, essential and polyunsaturated fats and fibre-rich carbohydrates should be promoted especially in overweight, obese or diabetic women. An adequate intake of micronutrients (e.g. iron, calcium, folate, vitamin D and carotenoids) is also crucial to support pregnancy and breastfeeding. Moderate physical activity throughout pregnancy improves muscle tone and function, besides decreasing the risk of preeclampsia, gestational diabesity (i.e. diabetes associated with obesity) and postpartum overweight. Intervention studies claim that an average of 30 min of exercise/day contributes to long-term benefits for maternal overall health and wellbeing. Other factors such as microbiome modulation, behavioural strategies (e.g. smoking cessation, anxiety/stress reduction and sleep quality), maternal genetics and age, social class and education might also influence the maternal quality of life. These factors contribute to ensure a healthy pregnancy, or at least to reduce the risk of adverse maternal and foetal outcomes during pregnancy and later in life.


Asunto(s)
Dieta Saludable , Ejercicio Físico , Salud Materna , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Complicaciones del Embarazo/prevención & control , Conducta de Reducción del Riesgo , Metabolismo Energético , Conducta Alimentaria , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/epidemiología , Complicaciones del Embarazo/fisiopatología , Resultado del Embarazo , Calidad de Vida , Medición de Riesgo , Factores de Riesgo
11.
Antioxidants (Basel) ; 9(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961933

RESUMEN

Oxidative stress plays an important role in the pathogenesis of ocular diseases, including hypertensive eye diseases. The beneficial effects of olive oil on cardiovascular diseases might rely on minor constituents. Currently, very little is known about the chemical composition and/or therapeutic effects of the cultivated olive tree's counterpart, wild olive (also known in Spain as acebuche-ACE). Here, we aimed to analyze the antioxidant and retinoprotective effects of ACE oil on the eye of hypertensive mice made hypertensive via administration of NG-nitro-L-arginine-methyl-ester (L-NAME), which were subjected to a dietary supplementation with either ACE oil or extra virgin olive oil (EVOO) for comparison purposes. Deep analyses of major and minor compounds present in both oils was accompanied by blood pressure monitoring, morphometric analyses, as well as different determinations of oxidative stress-related parameters in retinal layers. Aside from its antihypertensive effect, an ACE oil-enriched diet reduced NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity/gene/protein expression (with a major implication of NADPH oxidase (NOX)2 isoform) in the retinas of hypertensive mice. Supplementation with ACE oil in hypertensive animals also improved alterations in nitric oxide bioavailability and in antioxidant enzyme profile. Interestingly, our findings show that the use of ACE oil resulted in better outcomes, compared with reference EVOO, against hypertension-related oxidative retinal damage.

12.
Toxics ; 8(3)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698382

RESUMEN

Sunitinib (Su) is a tyrosine kinase inhibitor with antiangiogenic and antineoplastic effects that is recommended therapy for renal cell carcinoma, gastrointestinal stromal tumors, and pancreatic neuroendocrine tumors. Arterial hypertension is one of the adverse effects observed in the treatment with Su. The aim of this work was to deepen our understanding of the underlying mechanisms involved in the development of this side effect. Studies on endothelial function, vascular remodeling and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) system were carried out in thoracic aortas from rats treated with Su for three weeks. Animals subjected to Su treatment presented with increased blood pressure and reduced endothelium-dependent vasodilation, the latter being reverted by NADPH oxidase blockade. Furthermore, vascular remodeling and stronger Masson trichrome staining, together with enhanced immunofluorescence signal for collagen 1 alpha 1 (Col1α1), were observed in aortas from treated animals. These results were accompanied by a significant elevation in superoxide anion production and the activity/protein/gene expression of NADPH oxidase isoforms (NOX1, NOX2, and NOX4), which was also prevented by NOX inhibition. Furthermore, a decrease in nitric oxide (NO) levels and endothelial nitric oxide synthase (eNOS) activation was observed in aortas from Su-treated animals. All these results indicate that endothelial dysfunction secondary to changes in vascular remodeling and oxidative stress might be responsible for the typical arterial hypertension that develops following treatment with Su.

13.
Life Sci ; 257: 118072, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32659367

RESUMEN

AIMS: Sunitinib (Su), a tyrosine kinase inhibitor, is one of the most commonly used anti-angiogenic drugs. Some studies have described retinal detachment and photoreceptor damage following systemic exposure to Su, despite beneficial effects achieved with local treatment of ocular pathologies. The aim of this study was to explore the role of NADPH oxidase system and oxidative stress in eyes from Su-treated animals. MAIN METHODS: Male Wistar rats were administered 25 mg Su/kg body weight/day incorporated in the chow for 3 weeks. Upon treatment completion, NADPH oxidase activity and ROS levels were measured in ocular tissue by chemiluminescence and dihydroethidium (DHE) staining, respectively. The expression of NADPH oxidase isoforms (NOX1, NOX2 and NOX4), antioxidant enzymes and endothelial/inducible nitric oxidase isoforms (eNOS/iNOS) in the eyecup and/or retina were measured via immunofluorescence, immunoblotting and RT-qPCR. KEY FINDINGS: NADPH oxidase activity/expression increased in eyecup and retinas from Su-treated rats. Immunohistofluorescence studies in retinal layer confirmed a higher signal of NADPH oxidase isoforms after Su treatment. Treated animals also presented with reductions in NO levels and eNOS expression, whereas iNOS was upregulated. Finally, a significant depletion of antioxidant enzyme glutathione peroxidase was measured in eyecups of rats following Su exposure, and the opposite pattern was seen for glutathione reductase and superoxide dismutase. SIGNIFICANCE: This study demonstrates that Su treatment is associated with NADPH oxidase-derived oxidative stress in the eye. Long-term treatment of Su should be properly monitored to avoid retinotoxic effects that might result in ocular pathologies and sight-threatening conditions.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Retina/efectos de los fármacos , Sunitinib/toxicidad , Animales , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Masculino , NADPH Oxidasas/metabolismo , Ratas , Ratas Wistar , Retina/patología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...